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Simple model of excitable media with dispersion and curvature
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An alternative theoretical model that incorporates the experimentally measurable dispersion relation
is used to study the curvature effect and the dynamics of spiral waves in two-dimensional excitable
media. The model is constructed to abstract the most significant factors leading to phenomena observed
universally in excitable media. The analytically derived curvature relation and critical radius show an
excellent agreement with numerical simulations of the model. Both stationary rotating spirals and a
meandering motion are observed numerically, in accord with other experimental and theoretical studies.

PACS number(s): 82.20.Wt, 82.20.Mj, 87.10.+e¢

Spiral waves of excitation are observed in a wide
variety of excitable media and their dynamical behaviors
have attracted much attention for many years [1]. Tradi-
tionally theoretical studies have been carried out mainly
by using nonlinear partial differential equations (PDE’s)
[2,3]. Quite recently, however, cellular-automaton mod-
els with multiple states [4—6] and coupled-map lattices
[7] have been proposed for faster numerical computa-
tions. All of these models are based on the microscopic
physical mechanism of generation and propagation of ex-
citation and are used to simulate spiral waves observed at
a macroscopic level. Due to the complexity of their
mathematical structure, analytical studies are difficult
and most studies are carried out by computer simulations
except for some studies of perturbation analysis [3,8]. A
difficulty has been pointed out [9] also in quantitative
comparison of the results of PDE’s with the experimental
data, because some of the important parameters remain
poorly measured. The disagreement of the dispersion re-
lation computed by the Oregonator model with the ex-
perimental data of the Belousov-Zhabotinskii (BZ) reac-
tion was attributed to discrepancies in quantitative com-
parison of spiral waves [9,5].

In this Brief Report, we introduce an alternative
theoretical model from a different point of view. Since
spiral waves are observed universally, there should exist
some universal characteristics between the microscopic
level and the macroscopic level of general excitable
media. The motivation of our modeling is to provide a
tool that is used to abstract these most essential factors
determining the characteristics of spiral waves. The im-
portance of such an approach has been pointed out by
Zykov [10] in his kinematic approach. We construct our
model based on the essential characteristic in a “meso-
scopic” level of excitable media (dispersion relation): the
propagation velocity of excitation wave front depends on
the recovery time, that is, the time elapsed since the pas-
sage of the last excitation [11]. Since the dispersion rela-
tion can be easily measured experimentally, we can ex-
plicitly incorporate these data into the model to study the
spiral waves and can compare the quantitative results
directly with the experimental data. The simple
mathematical structure of the model enables us to derive
the exact nonlinear curvature relation.. In the previous
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studies by PDE’s, the curvature relation has been calcu-
lated only by a perturbation method in the limit of some
small parameter.

The solid line in Fig. 1(a) shows the dispersion relation
of the plane wave in the BZ reaction, cg,(T), obtained by
a least-square fitting of experimental data [12] assuming
the functional form.

c(T)=1/[laexp(—T/B)+y] if TZ26, (1)

where a, 3, and y are positive parameters and 7T is the
recovery time. After the excitation, the media needs a
certain time interval, called the refractory period 0, to re-
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FIG. 1. (a) Dispersion relation: fitted curve based on data of
the BZ reaction (solid line) and the numerical simulation of the
model (open squares). (b) Curvature relation: normal velocity of
curved front N(K,T) scaled by the velocity of plane wave
cpz(T) is plotted as a function of the scaled curvature rK (solid
line). The linear relation (dashed line) approximates N in the re-
gion of small K.
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cover its ability to conduct excitation. The fitted parame-
ters are ag;=21.7 s/mm, fBg,=11.1 s, and y5,=8.79
s/mm, and we estimate Oy, =15 s from the experimental
data. This relation reflects slow conduction velocity for
short recovery time due to incomplete recovery of excita-
bility of media.

At first we consider a regular square lattice of N XN
excitable elements (cells) with identical property with a
lattice constant d. The term “cell” is used here in a tech-
nical sense and does not correspond to a biological cell.
Each cell is connected to all the neighboring cells within
a circle of an interaction radius by a conducting cable.
The cell can be excited by incoming pulses from exciting
neighboring cells. When a cell gets excited, it emits an
excitation pulse which conducts to its neighboring cells
through the conducting cable. We assume that the con-
duction velocity of the pulse v depends on the recovery
time 7, that is, the time interval from the preceding exci-
tation to the present excitation at the cell which is emit-
ting the pulses. The cell gets excited when a sequence of
pulses exceeding a finite threshold number N arrive
after the refractory duration with a high frequency so
that all the pulses arrive within a finite time interval ¢,,.
The next excitation will be induced at the instant when
N th pulse arrives at the cell. The cell is more excitable
with smaller N, and larger ¢,,.

A single cell needs to wait for many incoming pulses to
propagate the excitation wave and this leads to a conduc-
tion delay of the wave front. Therefore the propagation
velocity of the macroscopic wave front is smaller than the
local conduction velocity of pulses between the neighbor-
ing cells. At first local conduction velocity of excitation
pulses v(T') should be determined so that the plane wave
satisfies the dispersion relation of the BZ reaction
cpz(T). The continuum limit of the model can be taken
when the lattice constant d goes to zero, keeping the total
size L =Nd,r,t,, and the ratio p =N, /Nyy constant,
where Ny is the number of neighboring cells within the
interaction range [ 7(r /d)? in the continuum limit]. We
consider the propagation of plane wave with a constant
velocity in the continuum limit and calculate the domain
of neighbors that contributes to the excitation of the cell.
A simple computation can lead to a relation [13]

v(T)=cgy(T)/cos(pm) . ()

Therefore v(T) should obey the relation (1) with the pa-
rameters a=cos(pm)agy, B=Pgz ¥ =cos(pm)ygz and
6=0g; to realize the dispersion relation ¢y, (7). It must
be noted that by using the relation (2), the model can be
adjusted to realize any given dispersion relation. We con-
sider that only the property in the continuum limit of the
model is physically relevant. A finite lattice constant d
and a dynamical element ‘““cell” are introduced simply to
facilitate numerical simulations and d should be small
enough so that the results do not depend on its value.
Therefore our model is essentially a continuum model
both spatially and temporally.

We confirmed the dispersion relation by numerical
simulations of the model. The periodic boundary condi-
tion is imposed on both opposite sides of the lattice of

20XN, cells (i.e., torus shape). We initiate a unidirec-
tional circulation of plane wave along the y direction and
calculate the steady-state circulation period T, after the
initial transient dies out. By changing N,, we get the re-
lation between the recovery time T, and the propagation
velocity of plane wave es=L,/T,, where LyZNyd. In
actual numerical simulations, to better reproduce the re-
sults in the continuum limit using the system with a finite
d, we randomize the position of the cells [6]. The posi-
tion of each cell deviates randomly from its regular posi-
tion by 6x in the x direction (8y in the y direction), where
both &x and 8y are independently Gaussian distributed
with mean zero and standard deviation o. The open
squares in Fig. 1(a) show the results with »=0.1 mm,
d=r/6, Ny =42, and 0 =0.3d [Nyny=m(r/d)*~113.1].
The center of the open square is the average over ten
samples with different random distributions of cells. The
data show an excellent agreement with the dispersion
curve and the statistical error is barely visible.

In two dimensions, the curved wave front propagates
with a velocity that depends on its curvature. The curva-
ture relation is another important ‘“mesoscopic” charac-
teristic other than the dispersion relation [2,3]. The nor-
mal propagation velocity N(K,T) of the curved convex
wave front with a curvature K (>0) can be derived
analytically in a similar way as the dispersion relation.
N(K,T) is expressed by a nonlinear function using the
root of a transcendental equation [13]. Figure 1(b) shows
N(K,T) obtained by solving the transcendental equation
numerically with p=0.3118. In general N(K,T) is a
concave-down function of K ending at K. taking N =0.
The critical curvature K, above which the curved wave
front fails to propagate can be calculated by the root of
another transcendental equation N(K_,T)=0 [13]. A
perturbation expansion in case of small curvature leads to
a familiar linear curvature relation,

N(K,T)~cy,(T)—D(T)K, K<<1/r, 3)

where D(T)=[sin’p7/(3cospm)]rcg,(T) and corre-
sponds to the ‘“‘diffusion coefficient” of the media when
we compare Eq. (3) with the linear curvature relation of
PDE’s [2,3,14]. The solid line in Fig. 2(a) shows the
dependence of the critical radius R _ =1/K_, on the pa-
rameter p in a range 0.25<p <0.5. The critical radius
obtained by assuming the linear curvature relation in Eq.
(3), D(T)/cgz(T)=[sin’*pm /(3 cospr)]r, is plotted by a
dashed line. As known from Fig. 2(a), the nonlinear
function N(K,T) is well approximated by the linear func-
tion in Eq. (3) when p is close to 0.5.

The critical radius R, can be confirmed by numerical
simulations. At ¢=0, all cells within a circle of radius
R ;. at the center of the system are excited. The critical
radius R, is the smallest value of R, that leads to an
outward propagation of the circular wave. In this simu-
lation, each cell is fully recovered before its excitation.
The critical radius averaged over 30 samples with
different random distributions is plotted in Fig. 2(a)
(r=0.1 mm, d=r/6, 0 =0.3d, 30= N, =49). The data
shows a fairly good agreement with the theoretical value
by the nonlinear curvature relation. The ‘diffusion
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FIG. 2. Dependence of various quantities on p. (a) Critical ra-
dius R, scaled by r: theoretical curve by the nonlinear curva-
ture relation (solid line), by the linear curvature relation (dashed
line), and the numerical simulations (open squares). (b) Scaled
diffusion coefficient B: theoretical curve (solid line) and the nu-
merical simulations (open squares).

coefficient” in the linear curvature relation in Eq. (3) was
also checked by numerical simulations. The circular
wave is initiated at t =0 by the same method and the dis-
tance from the center and the time of excitation is mea-
sured for each cell. The relation between the two quanti-
ties is well fitted by the theoretical curve obtained by as-
suming Eq. (3). Figure 2(b) plots the quantity
B =D /(rcg,) averaged over 30 samples, where D and g,
are the fitted parameters. The numerical data shows a
good agreement with the theoretical value of
B =sin’pw /(3 cosp) [solid line in Fig. 2(b)].

In the previous discussion, the nature of the wave
propagation was not influenced by the time interval ¢, as
long as t, is not too small. However, the property of
spiral waves strongly depends on t, because spiral wave
adjusts its geometry (rotation period and core size) de-
pending on the excitability of media. With the parame-
ters »r=0.1 mm, d =r /6, Ny, =42, and o0 =0.3d, the sys-
tem of 100X 100 cells supports a stationary rotating
spiral wave with constant rotation period T, over a wide
range of #, 2.0 s <t,=<6.0 s) that we have examined
[15]. Figure 3(a) shows the excited cells during a time in-
terval of 1 s accompanied by the counterclockwise revo-
lution of spiral wave (t,=4.0 s and T;=23.1 s). The
successive excited regions separated by 3.6 s are overwrit-
ten to animate the revolution of the spiral. We take open
boundary condition, that is, the cells on the boundary are
connected to the inside cells only. Around the center of
the spiral, there exists a self-organized circular core re-
gion in which cells cannot be excited because the high
curvature of the tip of the spiral wave prevents these cells
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FIG. 3. (a) Stationary rotating spiral wave. Each region
shows the successive excitation of cells separated by 3.6 s. The
size of the system is 1.67X1.67 mm?2. (b) Dependence of the
core radius 7, (scaled by r) on t,. The core radius r; by the
Tyson-Keener formula is also plotted.

from receiving more than N pulses within ¢,. We mea-
sured the steady rotation period T, and the core radius
tg =(N, 4 /m)12d, after spiral rotation becomes stationary.
N, is the sum of the number of cells forming the core and
that of cells on the tip trace surrounding the core [16].
Figure 3(b) shows 7, as a function of ¢,. Each point is
the average over many samples (10-30). T, is also a
monotonically decreasing function of ?, with a finite
asymptote (figure not shown). Tyson and Keener [3] have
derived an approximate formula for the relation between
T, and the core radius ry. This relation is universal for
any excitable media described by the general reaction
diffusion equations. r is the radius where the spiral wave
front has zero tangential velocity; its relation to r, is still
unclear except that 7 is a little larger than r,. We calcu-
late 7, from Ty by applying their formula and plot in Fig.
3(b). Our results for spiral waves is consistent with the
result of PDE’s.

The simulations in Figs. 3(a)-3(b) were carried out
with the “diffusion coefficient” D =(6-7)X 103 mm?/ s
that is larger than the value of the BZ reaction
(Dg;=2X%X1073 mm?/ s). The model has three parame-
ters 7, p, and t,, that should be determined to realize the
spiral wave in the BZ reaction. By using T,~17.3 s [12],
we determine » =0.06024 mm and p =0.3183 (N, =36)
to realize Dy, [17]. However, in the numerical simula-
tions with these parameters, we do not obtain a station-
ary rotating spiral wave over a range of 1.5s=<¢,<6.0s
that we have examined. The tip traces a flower-petal pat-
tern as shown in Fig. 4 (¢, =1.5 s) and the trace does not
close. Such a meandering motion has been widely ob-
served both experimentally [9,18] and numerically
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[9,19,7]. With t,,=1.7 s, the mean rotation period of the
meandering spiral T, is about 17.3 s, that is, close to the
rotation period of the stationary spiral in the BZ reac-
tion. The meander of the tip is confined to a region of ra-
dius 7.4~0.13 mm. This amount is close to the theoreti-
cal estimation by the Tyson-Keener formula
(ro=0.12 mm) and the core size in the BZ reaction (0.09
mm) [20,5]. By numerical simulations using the Orego-
nator model, Tyson and Keener [3] were also unsuccess-
ful in obtaining a stationary spiral. However our result
shows a better quantitative agreement with experimental
data than their data of meandering spiral (r.=0.18 mm
and T,=20s).

In summary, we introduce a simple model of excitable
media based only on ‘“mesoscopic” characteristics of the
media (dispersion relation and curvature relation). The
model successfully reproduces the dynamical behavior
observed universally in excitable media (stationary spiral
with a core and meandering) in accord with other experi-
mental and theoretical studies. Therefore we demon-
strate that dispersion relation and curvature relation are
the most significant factors determining the characteris-
tics of spiral waves. Since these relations are easily
measurable in experiment, the model provides more in-
teractive connection between experiment and theory than
the previous theoretical models.

FIG. 4. Trace of the tip of meandering spiral over 73 s. The
tip starts from the open square and ends at the closed square.
The size of the box is 0.75X0.75 mm?.
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